
Preface

What I hear, I forget; What I see, I remember; What I do, I understand.

—Confucius, 551–479 BC

Once upon a time, every computer specialist had a gestalt understanding of how

computers worked. The overall interactions among hardware, software, compilers,

and the operating system were simple and transparent enough to produce a coherent

picture of the computer’s operations. As modern computer technologies have become

increasingly more complex, this clarity is all but lost: the most fundamental ideas and

techniques in computer science—the very essence of the field—are now hidden under

many layers of obscure interfaces and proprietary implementations. An inevitable

consequence of this complexity has been specialization, leading to computer science

curricula of many courses, each covering a single aspect of the field.

We wrote this book because we felt that many computer science students are

missing the forest for the trees. The typical student is marshaled through a series of

courses in programming, theory, and engineering, without pausing to appreciate the

beauty of the picture at large. And the picture at large is such that hardware and

software systems are tightly interrelated through a hidden web of abstractions, inter-

faces, and contract-based implementations. Failure to see this intricate enterprise

in the flesh leaves many students and professionals with an uneasy feeling that, well,

they don’t fully understand what’s going on inside computers.

We believe that the best way to understand how computers work is to build one

from scratch. With that in mind, we came up with the following concept. Let’s spec-

ify a simple but sufficiently powerful computer system, and have the students build

its hardware platform and software hierarchy from the ground up, starting with

nothing more than elementary logic gates. And while we are at it, let’s do it right. We

say this because building a general-purpose computer from first principles is a huge

undertaking. Therefore, we identified a unique educational opportunity not only to



build the thing, but also to illustrate, in a hands-on fashion, how to effectively plan

and manage large-scale hardware and software development projects. In addition, we

sought to demonstrate the ability to construct, through recursive ascent and human

reasoning, fantastically complex and useful systems from nothing more than a few

primitive building blocks.

Scope

The book exposes students to a significant body of computer science knowledge,

gained through a series of hardware and software construction tasks. These tasks

demonstrate how theoretical and applied techniques taught in other computer science

courses are used in practice. In particular, the following topics are illustrated in a

hands-on fashion:

m Hardware: Logic gates, Boolean arithmetic, multiplexors, flip-flops, registers,

RAM units, counters, Hardware Description Language (HDL), chip simulation and

testing.

m Architecture: ALU/CPU design and implementation, machine code, assembly

language programming, addressing modes, memory-mapped input/output (I/O).

m Operating systems: Memory management, math library, basic I/O drivers,

screen management, file I/O, high-level language support.

m Programming languages: Object-based design and programming, abstract data

types, scoping rules, syntax and semantics, references.

m Compilers: Lexical analysis, top-down parsing, symbol tables, virtual stack-

based machine, code generation, implementation of arrays and objects.

m Data structures and algorithms: Stacks, hash tables, lists, recursion, arithmetic

algorithms, geometric algorithms, running time considerations.

m Software engineering: Modular design, the interface/implementation paradigm,

API design and documentation, proactive test planning, programming at the large,

quality assurance.

All these topics are presented with a very clear purpose: building a modern com-

puter from the ground up. In fact, this has been our topic selection rule: The book

focuses on the minimal set of topics necessary for building a fully functioning com-

puter system. As it turns out, this set includes many fundamental ideas in applied

computer science.

x Preface



Courses

The book is intended for students of computer science and other engineering dis-

ciplines in colleges and universities, at both the undergraduate and graduate levels.

A course based on this book is ‘‘perpendicular’’ to the normal computer science

curriculum and can be taken at almost any point during the program. Two natural

slots are ‘‘CS-2’’—immediately after learning programming, and ‘‘CS-199’’—a

capstone course coming at the end of the program. The former course can provide

a systems-oriented introduction to computer science, and the latter an integrative,

project-oriented systems building course. Possible names for such courses may be

Constructive Introduction to Computer Science, Elements of Computing Systems,

Digital Systems Construction, Computer Construction Workshop, Let’s Build a

Computer, and the like. The book can support both one- and two-semester courses,

depending on topic selection and pace of work.

The book is completely self-contained, requiring only programming (in any lan-

guage) as a prerequisite. Thus, it lends itself not only to computer science majors,

but also to computer-savvy students seeking to gain a hands-on view of hardware

architectures, operating systems, and modern software engineering in the framework

of one course. The book and the accompanying Web site can also be used as a self-

study learning unit, suitable to students from any technical or scientific discipline

following a programming course.

Structure

The introduction chapter presents our approach and previews the main hardware

and software abstractions discussed in the book. This sets the stage for chapters 1–

12, each dedicated to a key hardware or software abstraction, a proposed imple-

mentation, and an actual project that builds and tests it. The first five chapters focus

on constructing the hardware platform of a simple modern computer. The remaining

seven chapters describe the design and implementation of a typical multi-tier soft-

ware hierarchy, culminating in the construction of an object-based programming

language and a simple operating system. The complete game plan is depicted in

figure P.1.

The book is based on an abstraction-implementation paradigm. Each chapter starts

with a Background section, describing relevant concepts and a generic hardware

or software system. The next section is always Specification, which provides a clear

xi Preface



statement of the system’s abstraction—namely, the various services that it is

expected to deliver. Having presented the what, each chapter proceeds to discuss how

the abstraction can be implemented, leading to a (proposed) Implementation section.

The next section is always Perspective, in which we highlight noteworthy issues left

out from the chapter. Each chapter ends with a Project section that provides step-by-

step building instructions, testing materials, and software tools for actually building

and unit-testing the system described in the chapter.

Projects

The computer system described in the book is for real—it can actually be built, and

it works! A reader who takes the time and effort to gradually build this computer will

gain a level of intimate understanding unmatched by mere reading. Hence, the book

is geared toward active readers who are willing to roll up their sleeves and build a

computer from the ground up.

Each chapter includes a complete description of a stand-alone hardware or soft-

ware development project. The four projects that construct the computer platform

are built using a simple Hardware Description Language (HDL) and simulated on a

hardware simulator supplied with the book. Five of the subsequent software projects

c3

c10

c7

c9

c6

c5

c11

c1

c2

c12

c8

c4

Typical
software
hierarchy

Typical
hardware
platform

High-Level Language / Applications (∞)

Operating System

Compiler

Virtual Machine

Assembler

Computer Architecture

Machine Language

ALU Memory Elements

Boolean Arithmetic

Boolean Logic

Sequential Logic

Figure P.1 Book and proposed course map, with chapter numbers in circles.

xii Preface



(assembler, virtual machine I and II, and compiler I and II) can be written in any

modern programming language. The remaining three projects (low-level program-

ming, high-level programming, and the operating system) are written in the assembly

language and high-level language implemented in previous projects.

Project Tips There are twelve projects altogether. On average, each project entails

a weekly homework load in a typical, rigorous university-level course. The projects

are completely self-contained and can be done (or skipped) in any desired order. Of

course the ‘‘full experience’’ package requires doing all the projects in their order of

appearance, but this is just one option.

When we teach courses based on this book, we normally make two significant

concessions. First, except for obvious cases, we pay no attention to optimization,

leaving this very important subject to other, more specific courses. Second, when

developing the translators suite (assembler, VM implementation, and compiler), we

supply error-free test files (source programs), allowing the students to assume that

the inputs of these translators are error-free. This eliminates the need to write code

for handling errors and exceptions, making the software projects significantly more

manageable. Dealing with incorrect input is of course critically important, but once

again we assume that students can hone this skill elsewhere, for example, in dedi-

cated programming and software design courses.

Software

The book’s Web site (www.idc.ac.il/tecs) provides the tools and materials necessary

to build all the hardware and software systems described in the book. These include

a hardware simulator, a CPU emulator, a VM emulator, and executable versions

of the assembler, virtual machine, compiler, and operating system described in the

book. The Web site also includes all the project materials—about two hundred test

programs and test scripts, allowing incremental development and unit-testing of each

one of the twelve projects. All the supplied software tools and project materials can

be used as is on any computer equipped with either Windows or Linux.

Acknowledgments

All the software that accompanies the book was developed by our students at the

Efi Arazi School of Computer Science of the Interdisciplinary Center Herzliya, a new

xiii Preface

http://www.idc.ac.il/tecs


Israeli university. The chief software architect was Yaron Ukrainitz, and the devel-

opers included Iftach Amit, Nir Rozen, Assaf Gad, and Hadar Rosen-Sior. Working

with these student-developers has been a great pleasure, and we feel proud and for-

tunate to have had the opportunity to play a role in their education. We also wish

to thank our teaching assistants, Muawyah Akash, David Rabinowitz, Ran Navok,

and Yaron Ukrainitz, who helped us run early versions of the course that led to this

book. Thanks also to Jonathan Gross and Oren Baranes, who worked on related

projects under the excellent supervision of Dr. Danny Seidner, to Uri Zeira and Oren

Cohen, for designing an integrated development environment for the Jack language,

to Tal Achituv, for useful advice on open source issues, and to Aryeh Schnall, for

careful reading and meticulous editing suggestions.

Writing the book without taking any reduction in our regular professional duties

was not simple, and so we wish to thank esti romem, administrative director of

the EFI Arazi School of Computer Science, for holding the fort in difficult times.

Finally, we are indebted to the many students who endured early versions of this

book and helped polish it through numerous bug reports. In the process, we hope,

they have learned first-hand that insight of James Joyce, that mistakes are the portals

of discovery.

Noam Nisan

Shimon Schocken

xiv Preface



The Elements of Computing Systems



Human
Thought

Chips and
Logic Gates

Application or
System Design

Compiler

VM Translator

Computer
Architecture

Gate Logic

Electrical
Engineering

Physics

Assembler

Chapters 9,12

Software
hierarchy

Hardware
hierarchy

Chapters 10–11

Chapters 7–8

Chapter 6

Chapters 1–3

Hardware
Platform

Machine
Language

Assembly
Language

Virtual
Machine

High-Level
Language

&
Operating System

Chapters 4–5

abstract interface

abstract interface

abstract interface

abstract interface

abstract interface

abstract interface

Figure I.1 The major abstractions underlying the design of a typical computing system. The
implementation of each level is accomplished using abstract services and building blocks from
the level below.


