
Introduction: Hello, World Below

The true voyage of discovery consists not of going to new places, but of having a new pair of eyes.

—Marcel Proust (1871–1922)

This book is a voyage of discovery. You are about to learn three things: how com-

puters work, how to break complex problems into manageable modules, and how to

develop large-scale hardware and software systems. This will be a hands-on process

as you create a complete and working computer system from the ground up. The

lessons you will learn, which are far more important and general than the computer

itself, will be gained as side effects of this activity. According to the psychologist Carl

Rogers, ‘‘the only kind of learning which significantly influences behavior is self-

discovered or self-appropriated—truth that has been assimilated in experience.’’ This

chapter sketches some of the discoveries, truths, and experiences that lie ahead.

The World Above

If you have taken any programming course, you’ve probably encountered something

like the program below early in your education. This particular program is written in

Jack—a simple high-level language that has a conventional object-based syntax.

// First example in Programming 101:

class Main {

function void main() {

do Output.printString("Hello World");

do Output.println(); // New line.

return;

}

}



Trivial programs like Hello World are deceptively simple. Did you ever think

about what it takes to actually run such a program on a computer? Let’s look under

the hood. For starters, note that the program is nothing more than a bunch of dead

characters stored in a text file. Thus, the first thing we must do is parse this text,

uncover its semantics, and reexpress it in some low-level language understood by our

computer. The result of this elaborate translation process, known as compilation, will

be yet another text file, containing machine-level code.

Of course machine language is also an abstraction—an agreed upon set of binary

codes. In order to make this abstract formalism concrete, it must be realized by some

hardware architecture. And this architecture, in turn, is implemented by a certain chip

set—registers, memory units, ALU, and so on. Now, every one of these hardware

devices is constructed from an integrated package of elementary logic gates. And

these gates, in turn, can be built from primitive gates like Nand and Nor. Of course

every one of these gates consists of several switching devices, typically implemented

by transistors. And each transistor is made of— Well, we won’t go further than that,

because that’s where computer science ends and physics starts.

You may be thinking: ‘‘On my computer, compiling and running a program is

much easier—all I have to do is click some icons or write some commands!’’ Indeed,

a modern computer system is like a huge iceberg, and most people get to see only

the top. Their knowledge of computing systems is sketchy and superficial. If, how-

ever, you wish to explore beneath the surface, then lucky you! There’s a fascinating

world down there, made of some of the most beautiful stuff in computer science. An

intimate understanding of this underworld is one of the things that separate naı̈ve

programmers from sophisticated developers—people who can create not only appli-

cation programs, but also complex hardware and software technologies. And the best

way to understand how these technologies work—and we mean understand them in

the marrow of your bones—is to build a complete computer system from scratch.

Abstractions

You may wonder how it is humanly possible to construct a complete computer sys-

tem from the ground up, starting with nothing more than elementary logic gates.

This must be an enormously complex enterprise! We deal with this complexity by

breaking the project into modules, and treating each module separately, in a stand-

alone chapter. You might then wonder, how is it possible to describe and construct

these modules in isolation? Obviously they are all interrelated! As we will show

2 Introduction



throughout the book, a good modular design implies just that: You can work on the

individual modules independently, while completely ignoring the rest of the system.

In fact, you can even build these modules in any desired order!

It turns out that this strategy works well thanks to a special gift unique to humans:

our ability to create and use abstractions. The notion of abstraction, central to

many arts and sciences, is normally taken to be a mental expression that seeks to

separate in thought, and capture in some concise manner, the essence of some entity.

In computer science, we take the notion of abstraction very concretely, defining it to

be a statement of ‘‘what the entity does’’ and ignoring the details of ‘‘how it does it.’’

This functional description must capture all that needs to be known in order to use

the entity’s services, and nothing more. All the work, cleverness, information, and

drama that went into the entity’s implementation are concealed from the client who

is supposed to use it, since they are simply irrelevant. The articulation, use, and im-

plementation of such abstractions are the bread and butter of our professional prac-

tice: Every hardware and software developer is routinely defining abstractions (also

called ‘‘interfaces’’) and then implementing them, or asking other people to imple-

ment them. The abstractions are often built layer upon layer, resulting in higher and

higher levels of capabilities.

Designing good abstractions is a practical art, and one that is best acquired

by seeing many examples. Therefore, this book is based on an abstraction-

implementation paradigm. Each book chapter presents a key hardware or software

abstraction, and a project designed to actually implement it. Thanks to the modular

nature of these abstractions, each chapter also entails a stand-alone intellectual unit,

inviting the reader to focus on two things only: understanding the given abstrac-

tion (a rich world of its own), and then implementing it using abstract services and

building blocks from the level below. As you push ahead in this journey, it will be

rather thrilling to look back and appreciate the computer that is gradually taking

shape in the wake of your efforts.

The World Below

The multi-tier collection of abstractions underlying the design of a computing sys-

tem can be described top-down, showing how high-level abstractions can be reduced

into, or expressed by, simpler ones. This structure can also be described bottom-up,

focusing on how lower-level abstractions can be used to construct more complex

ones. This book takes the latter approach: We begin with the most basic elements—

3 Introduction



primitive logic gates—and work our way upward, culminating in the construction

of a general-purpose computer system. And if building such a computer is like

climbing Mount Everest, then planting a flag on the mountaintop is like having the

computer run a program written in some high-level language. Since we are going

to ascend this mountain from the ground up, let us survey the book plan in the op-

posite direction—from the top down—starting in the familiar territory of high-level

programming.

Our tour consists of three main legs. We start at the top, where people write

and run high-level programs (chapters 9 and 12). We then survey the road down to

hardware land, tracking the fascinating twists and curves of translating high-level

programs into machine language (chapters 6, 7, 8, 10, 11). Finally, we reach the low

grounds of our journey, describing how a typical hardware platform is actually con-

structed (chapters 1–5).

High-Level Language Land

The topmost abstraction in our journey is the art of programming, where entrepre-

neurs and programmers dream up applications and write software that implements

them. In doing so, they blissfully take for granted the two key tools of their trade:

the high-level language in which they work, and the rich library of services that sup-

ports it. For example, consider the statement do Output.printString(‘‘Hello

World’’). This code invokes an abstract service for printing strings—a service that

must be implemented somewhere. Indeed, a bit of drilling reveals that this service

is usually supplied jointly by the host operating system and the standard language

library.

What then is a standard language library? And how does an operating system (OS)

work? These questions are taken up in chapter 12. We start by presenting key algo-

rithms relevant to OS services, and then use them to implement various mathemati-

cal functions, string operations, memory allocation tasks, and input/output (I/O)

routines. The result is a simple operating system, written in the Jack programming

language.

Jack is a simple object-based language, designed for a single purpose: to illustrate

the key software engineering principles underlying the design and implementation

of modern programming languages like Java and C#. Jack is presented in chapter 9,

which also illustrates how to build Jack-based applications, for example, computer

games. If you have any programming experience with a modern object-oriented lan-

guage, you can start writing Jack programs right away and watch them execute on

the computer platform developed in previous chapters. However, the goal of chapter

4 Introduction



9 is not to turn you into a Jack programmer, but rather to prepare you to develop the

compiler and operating system described in subsequent chapters.

The Road Down to Hardware Land

Before any program can actually run and do something for real, it must be translated

into the machine language of some target computer platform. This compilation pro-

cess is sufficiently complex to be broken into several layers of abstraction, and these

usually involve three translators: a compiler, a virtual machine implementation, and

an assembler. We devote five book chapters to this trio, as follows.

The translation task of the compiler is performed in two conceptual stages: syntax

analysis and code generation. First, the source text is analyzed and grouped into

meaningful language constructs that can be kept in a data structure called a ‘‘parse

tree.’’ These parsing tasks, collectively known as syntax analysis, are described in

chapter 10. This sets the stage for chapter 11, which shows how the parse tree can be

recursively processed to yield a program written in an intermediate language. As with

Java and C#, the intermediate code generated by the Jack compiler describes a se-

quence of generic steps operating on a stack-based virtual machine (VM). This clas-

sical model, as well as a VM implementation that realizes it on an actual computer,

are elaborated in chapters 7–8. Since the output of our VM implementation is a large

assembly program, we have to translate it further into binary code. Writing an

assembler is a relatively simple task, taken up in chapter 6.

Hardware Land

We have reached the most profound step in our journey—the descent from machine

language to the machine itself—the point where software finally meets hardware.

This is also the point where Hack enters the picture. Hack is a general-purpose

computer system, designed to strike a balance between simplicity and power. On the

one hand, the Hack architecture can be built in just a few hours of work, using the

guidelines and chip set presented in chapters 1–3. At the same time, Hack is suffi-

ciently general to illustrate the key operating principles and hardware elements un-

derlying the design of any digital computer.

The machine language of the Hack platform is specified in chapter 4, and the

computer design itself is discussed and specified in chapter 5. Readers can build this

computer as well as all the chips and gates mentioned in the book on their home

computers, using the software-based hardware simulator supplied with the book

and the Hardware Description Language (HDL) documented in appendix A. All the

5 Introduction



developed hardware modules can be tested using supplied test scripts, written in a

scripting language documented in appendix B.

The computer that emerges from this construction is based on typical components

like CPU, RAM, ROM, and simulated screen and keyboard. The computer’s regis-

ters and memory systems are built in chapter 3, following a brief discussion of

sequential logic. The computer’s combinational logic, culminating in the Arithmetic

Logic Unit (ALU) chip, is built in chapter 2, following a brief discussion of Boolean

arithmetic. All the chips presented in these chapters are based on a suite of elemen-

tary logic gates, presented and built in chapter 1.

Of course the layers of abstraction don’t stop here. Elementary logic gates are

built from transistors, using technologies based on solid-state physics and ultimately

quantum mechanics. Indeed, this is where the abstractions of the natural world, as

studied and formulated by physicists, become the building blocks of the abstractions

of the synthetic worlds built and studied by computer scientists.

This marks the end of our grand tour preview—the descent from the high-level

peaks of object-based software, all the way down to the bricks and mortar of the

hardware platform. This typical modular rendition of a multi-tier system represents

not only a powerful engineering paradigm, but also a central dogma in human rea-

soning, going back at least 2,500 years:

We deliberate not about ends, but about means. For a doctor does not deliberate whether he shall

heal, nor an orator whether he shall persuade . . . They assume the end and consider how and by

what means it is attained, and if it seems easily and best produced thereby; while if it is achieved

by other means, they consider how it will be achieved and by what means this will be achieved,

until they come to the first cause . . . and what is last in the order of analysis seems to be first in

the order of becoming. (Aristotles, Nicomachean Ethics, Book III, 3, 1112b)

So here’s the plan, in the order of becoming. Starting with the construction of ele-

mentary logic gates (chapter 1), we go bottom-up to combinational and sequential

chips (chapters 2–3), through the design of a typical computer architecture (chapters

4–5) and a typical software hierarchy (chapters 6–8), all the way to implementing

a compiler (chapters 10–11) for a modern object-based language (chapter 9), ending

with the design and implementation of a simple operating system (chapter 12). We

hope that the reader has gained a general idea of what lies ahead and is eager to push

forward on this grand tour of discovery. So, assuming that you are ready and set, let

the countdown start: 1, 0, Go!

6 Introduction


